Registered by Australia Post — Publication No. VBG7930

$2

RRP

Number 27 Circulation: 1200 August 1988

Next AUG Meeting

Sunday, August 2Ist, 1988 at 2pm

(Doora open at 1pm, meeting starts at 2pm sharp)

AUG meetings are held in the Rotunda at Monash University
Welington Road, Clayton Melways map 70 reference F10 and map 84A

Amiga Users Group Inc, PO Box 48, Boronig, 3155, Victorig, Austrdiia

Australia’s Largest independent Association of Amiga Qwners
The Amiga Users Group Inc has no affiliation with Commodore
Amiga is a trademark of Commeodore—Amiga, Inc

Page 1 Number 27

Who Are We?

The Amiga Users Group is a non-profit association of people interested in
the Amiga computer and related topics. With over 10600 members, we are
the largest independent association of Amiga users in Australia,

Club Meetings

Club meetings are held at 2pm on the third Sunday of each month in the
Rotunda at Monash University, Wellington Road, Clayton. Details on how
to get there are on the back cover of this newsletter. The dates of upcoming
meetings are;

Sunday, August 21st at 2pm
Sunday, September 18th at 2pm
Sunday, October 16th at 2pm

Production Credits

This month’s newsletter was edited by Peter Jetson. Equipment and
software used was: Non-descript Taiwanese PC Clone computer, Brother
HR-40 printer, Brother HL-8 printer, Gemini 10x printer, Wordstar, Fancy
Font and Grabbit.

Copyright and Reprint Privileges

Amiga Workbench is Copyright 1988 by the Amiga Users Group Inc.
Articles herein that are copyrighted by individual authors or otherwise
explicitly marked as having restricted reproduction rights may not be
reprinted or copied without written permission from the Amiga Users Group
or the authors. All other articles may be reprinted for any non-commercial
purpose if accompanied by a credit line including the original author’s name
and the words "Reprinted from Amiga Workbench, newsletter of the Amiga
Users Group, PO box 48, Boronia, 3155",

Contributions

Articles, papers, letters, drawings and cartoons are actively sought for
publication in Amiga Workbench. Please submit your contributions on
disk, since that means they don’t have to be re-typed! All disks will be
returned! Please save your article in text-only format (If it can be loaded by
ED, it is text-only). Absolute deadline for articles is 16 days before the
meeting date. Contributions can be sent to: The Editor, AUG, PO Box 48,
Boronia, 3155.

Membership and Subscriptions

Membership of the Amiga Users Group is available for an annual fee of
$20. To become a member of AUG, fill in the membership form in this
issue (or a photocopy of it), and send it with a cheque for $20 to:

Amiga Users Group, PO Box 48, Boronia, 3155

Public Domain Software

Disks from our public domain library are available on quality 3.5" disks for
$8 each including postage on AUG supplied disks, or $2 each on your own
disks. The group currently holds over 180 volumes, mostly sourced from the
USA, with more on the way each month. Details of latest releases are
printed in this newsletter, and a catalog disk is available.

August 1988 Amiga Workbench

[IGA™ Users Group

Member’s Discounts

The Amiga Users Group negotiates discounts for its members on hardware,
software and books.

Currently, Technical Books in Swanston Street in the city offers AUG
members a 10% discount on computer related books, as does McGills in
Elizabeth Street. Just show your membership card. Although we have no
formal arrangements with other companies yet, most seem willing to offer a
discount to AUG members. It always pays to ask!

Back lssues of Newsletter

All back issues of Amiga Workbench are now available, for $2 each
including postage. Note that there may be delays while issues are reprinted.
Back Issues are also available at meetings.

AmigaLink - Our Bulletin Board System

The Amiga Users Group operates a bulletin board system devoted to the
Amiga, using the Opus message and conferencing system. Amigalink is
available 24 hours a day on (03) 792 3918, and can be accessed at V21
(300bps), V22 (1200bps), V23 (1200/75bps) or V22bis (2400bps) using 8
data bits, 1 stop bit and no parity.

AmigaLink is part of the world-wide Fido/Opus network of bulletin boards,
and we participate in the national and international Amiga conferences.
Amiga Link has selected Public Domain software available for downloading,
and encourages the uploading of useful public domain programs from its
users. Amiga Link is FidoNet node number 631/324.

Newsletter Advertising

The Amiga Users Group accepts commercial advertising in Amiga
Workbench subject to the availability of space at thesc rates:

Quarter page $20
Half page $40
Full page $70
Double page spread $120

These rates are for full-size camera-ready copy only. We have no
photographic or typesetting facilities. Absolute deadline for copy is 16 days
before the meeting date. Send the copy and your cheque to: The Editor,
AUG, PO Box 48, Boronia, 3155, Victoria.

Amiga Users Group Committee

Co-ordinator: Bob Scarfe 376 4143 Kensington
Vice Co-ord: Lester McClure ?7? 7227 Mt Waverley
Meeting Chair: Ron Wail 707 Doncaster
Secretary: John Elston 3754142 Moonee Ponds
Treasurer: Donna Heenan 729 2327 Bayswater
Membership: Neil Murray 794 5683 Dandenong
Purchasing: Bohdan Ferens 792 1138 Dandenong
Book Library: Joan Wood 5807463 Aspendale
Disk Library: Craig Hutchison 578 3962 Carnegie
Bditor: Peter Jetson 762 1386 Boronia
Committee: Doug Myers 428 0682 Abbotsford

Amiga Workbench Number 27

AMIGA WORKBENCH TpX REVIEW

Lachlan Myers

Typesetting on the Amiga - with help from Donald Knuth
(Alez got me into this; it’s really his faull.)

Somehow, he caught TEX from a PC and has
now infected my Amiga. Worse still, T think my brain
has been subverted and TEX has taken over from the
usual day to day concerns (like “Are my coins the
right shape for parking meters?” or “is there life
south of the Yarra?” - you know the kind of thing).
AmigaTrX comes from Stanford USA, via Alex and
TEXworks, who can provide local TEX for all kinds of
computers, even I?M. Don’t take my word for it; ask
him (tel (03) 699-4083)!

As most of you know, Stanford is a university
in America; American Universities are not all degree
factories, with courses in garbology and the Social Im-
plications of Food Processors — some of them actually
do real intellectual work.

Centres of learning like CalTech, Stanford, and
MIT have allowed great thinkers like Marvin Minsky
to consider Life, the Universe, and Very Expensive
Computers as ‘Toys. These are mega-smart guys, with
brains the size of small asteroids, paid to be clever and
do clever things, without too many restrictions. (The
results are often impressive, and if you don’t believe
that, read Prof. Minsky’s latest, “Society of Mind”.)

Stanford University allows Donald Knuth this
kind of luxury, which he has used to write three ex-
tremely clever books about The Art of Computer Pro-
gramming, which details and discusses the basic al-
gorithms used in computer programs. As well, he
writes all kinds of mathematical articles (to entertain
and enlighten mathematicians, typesetters, and other
odd-balls).

But the laying out of the first three volumes of his
masterwork, and getting everything just so was a very
frustrating business, so D.E.K sat down and thought
most hard about it all. And it seemed to him that
the handling of text was just the gort of thing that a
Stanford professor should be concerned with, and try
to sort out. So he did, and the result, after eight years
is TEX and its related programs. Well, he did a little
more; designed a new way of writing and documenting
computer brograms, too.

Don’t confuse TEX and that other yuppie sta-
tus symbol — desktop publishing — there is no com-
parison. The first does magnificent things with text,
like beautiful books; the other does useful things with
text, like newsletters. In typesetting there is a craft,
and an art. In desktop publishing there is a skill, and
a result. To illustrate this, take the special typeset-
ting rules for dealing with “.” the humble full-stop,
or period, and the double quotes left and right.

August 1988 Page 2

You can do some of this in programs like Page-
maker, using the fonts available from Adobe, (Page-
maker, and similarly, Adobe are trademarkst} of their
respective trademarkers, and who cares?) but most
people won’t know where to begin. It is necessary to
have looked around the program quite a bit to find
them in the first place, and be aware of the typeset-
ting conventions for ligatures and the kerning for full-
stops before setting out the document. In fact, that
is the whole trouble with desktop publishing; if you
aren’t an expert, then a good wordprocessing program
is more useful, and will be necessary anyway (just try
using the editor in Pagemaker for more than correc-
tions). What you then do is sort of pour the text into
the columns like honey into jars, and woe betide you
if you misjudge it! It can take hours to unstick!

TEX will handle these either automatically in the
simple cases, or accept explicit direction from you, the
user, at any time. So when the use is different in Mr.
Smith, in the three dots (...) of an ellipsis (don’t you
see ... 7), or the description of a mathematical series
(z14z2+23...2,) and at the end of a sentence, then
you can do it. Double quotes are different left — “ and
right — ”, as can be seen in the preceding paragraph.

Do ligatures keep you awake at night? These cute
little items are there to trip up the uninitiated — but
TEX will catch them automatically! jNo comprendo?

iDe nada!
£ ff
f£i fi
£l -~ il

v

The academic heritage shows; I’ve seen a number
of reviews for IBM-PC and Macintosh TEX packages
“which are clearly written by mathematicians, who are
amazed that finally they are able to use their uncon-
ventional squiggles for everything. It isn’t always set
up for conventional typesetting — this can always be
done, but may require digging a little deeper 1nto the
program,
So what does TEX do that’s so fantastic?

1 It handles all the fiddly bits invisibly, from foot-
notes to chapter headings and bibliographic ref-
erences and simple items for enumeration.

2 It produces properly set out typeset documents
with minimum effort. Most DTP programs will
handle standard typesetting conventions reason-
ably well, but won’t deal with unusual problems.
Mathematics has particular requirements, with
lots of funny symbols and special spacing, sub-
scripts on subscripts, and few DTP or WP pack-
ages will cope with these.

3 Any thing you want to do can be done, either eas-
ily through the inbuilt commands or by writing
a macro. There is an active circulation of these
through the TEX Users’ Group (TUG), based in
Providence, Rhode Island (the only acceptable

T Note: this article contains lots of names that are possibly trade-
marks (or not). You probably know who they are, they know who they
are, but I've forgotten. Please fill in the appropriate company in your
mind as you read this, The one you may not know is TEX - belonging

to the American Mathematical Society (Gawdelpus).

Number 27

Reds in the USA also hail from here). For exam-
ple; '
One common area that causes problems is tables, but

not for TEX;

Page 3

1985 1440 500
1986 1790 600
1987 2100 800

Just to test it out I decided to try a small trial,
from “Alice in Wonderland”, which may be informa-
tive. The construction is not particularly sophisti-
cated, as it is based on a tabular environment, but
the result is quite satisfactory.

Fury said to -
a mouse, That
he met
in the
house
‘Let us
both go
to law:
I will
prosecute
you, —
Come, I'l
take no
denial
we must
have a

trial:

for
really
this
morning
I've
nothing
to do.’
Said the
mouse to
the cur,
‘Such a
trial
dear sir,
With no
jury or
judge,
would be
wasting
our breath,’
‘T'll be
judge,
'l be
jury,’
Said
cunning
old Fury;
'l try
the whole

cause,

August 1988

Amiga Workbench

CED - Amiga Text Editor
by Lester McClure

One of the most useful programs for any computer
system is a general purpose text editor. Most
systems are supplied with such a tool and the Amiga
is no exception, with 'Ed' and 'Edit' hidden away in
the C directory. Anyone who has used either of these
programs will sgon have found their 1limitations,
although I still find Ed quite useful for a quick
change to my startup-sequence.

If you decide, as I have, that the standard AmigaDos
editors are not good enough, where do you start
looking for alternatives? UWhat do you want/expect an
editor program to do? How much are you prepared to
pay? If you decide to buy a commercial package, can
you 'try before you buy'? This article outlines my
experiences and how I found a solution to the above
prablems.

What should an editor do?

There are three things in this world people are
quaranteed to 'forever disagree' about; religion,
politics and text editors. There is NO best text
editor, Jjust one that suits your personal
requirements better than others (a bit like politics
and religion). I am prepared, however, to suggest
that a general purpose text editor for the Amiga
should do the following :-

- It must run from CLI or Workbench and fully support
multitasking.

-~ It should be designed for use with the mouse for
ease of learning, and the keyboard for speed.

- It must be intuitive to use, i.e. standard menus,
gadgets and requesters should be used with the
expected shortcut codes, for example A-q = Quit,
A-s = search etc. The shift/contral keys should
modify standard key functions in a logical manner,
e.g. Shift-Cursor Right should move to end of' line,
8hift-Cursor Down should move down a page/screen.

- There should be some form of on-line help facility
to provide quick assistance without having to refer
to the manual. More programs should take advantage
of the existence of a HELP key on the keyboard.

- Function keys should be programmable and it must be
possible to define sequences of commands as macros.
These definitions also need to be saved or loaded
to suit the file being edited.

- Multiple windows for editing and viewing different
sections of the same file is a very useful feature
especially if cutting and pasting between windows
is allowed.

- It must support TEXT and PROGRAMMER modes with
options like auto-indent for typing programs, and
word-wrap for typing documents.

- I prefer an editor to operate in INSERT mode but
others prefer OVERSTRIKE. There is no real

_ advantage in one over the other so let's have both.

- Selectable tab-stops and also automatic spaces
instead of tabs should be supported along with the
ability to operate in an open page layout, editing
mode. The cursor can then be moved anywhere on the
screen and the text entered without any regard for
'end of line'. This is sometimes referred to as
'sparse space' editing.

- If the editor can provide additional processing
features such as vertical columns and insertion of
printer control codes, that's fine but for full

Amiga Workbench

Number 27

-

[
]
-

August 1988 Page 4
TR
‘ BE f= d 8 B B4
3 DS GRAPHICS DISK-ZINE 3 DISK
SET ‘ FOR THE AMIGA® SET
P_:“":""” — Volume 1 Murmibeer 1 r__“’""'""” —
l = NOJIL avalable . L

THIS ISSUE:- Vol.1l. Ro:i. AUGUST 1988.
PALETTE: A1l about the new graphics/DTV (DeskTop Video) disk-1ine
E.A’s PHOTOLAB: You can have a chance to own an original
PREFERERCES: How to set up your Workbench for PAL video usage
AHIGA ARD PAL VIDEO: An in-~depth article on improving your PAL graphics
DTY ARTICLES LISTIHG: A complete listing of Amiga graphic/DTV articles
EXPRESS PAIRT V2.0: A review of PAR’S new paint softmware ‘
ARIMATION EFFECTS: A review of Hash Enterprise’s DTY effects package
AIBTS AHD TIPS: Hine tricks of the trade also Digi-View Aerial Imaging
BRUSBES: & selection of hi-res brushes to use in your paint programs
PALETTE ANIHATIOR: A deno and how 1t was put together
BEST OF PD: Three graphic programs to add to your FX drawer

PLUS 25 LOW, HED, RIGH, BAH INAGES TO IHPRESS
- « - BOWUS DISK IHCLUDED - - -
The first installmeat in PALETTE’S video serial - "HISSIOH

- RECOHMEHDED RETAIL PRICE: $26.00 -
(Add $2.00 Post + Packing Aust.)
fivailable From: PALETTE. 66 Parer St., Burwood. 3125. Victoria.

(Aniga is a registered tradeaark of Commodore-Aniga Inc.)

: HICROBE™

§

-

Page 5 Number 27

WYSIWYG operation, I expect to have to use a
dedicated word processor package.

What Packages are Available?

If you remove from consideration all of the
commercial desk top publishing and dedicated word
processing packages, there is not a great deal left.
I used Lattice Screen Editor (LSE) for quite some
time, and while it was quite a good programming
editor, it lacked any general word processing
capabilities. It also had the feel of being a
program that had been moved to the Amiga rather than
written for the Amiga. Others that come to mind are
TxEd and AEdit which, from reviews I've read, I
believe would not offer me anything new. I am not
prepared to spend more money just to be disappointed
again once I've had a decent chance to try them out.

There are, of course, always the Public Domain
of ferings. The main contenders here are Dme,
MicroEMACS and Usdit. I have tried each of these and
found none of them individually had the right
combination of features to suit me, although
collectively they came pretty close. Then, tucked
away on Fish disk #395, I found the answer to my
problems - CygnusEd or CED for short.

CED

This editor is not a freeware or shareware product
but is released into the Public Domain as a
demonstration package for us all to play with and
evaluate at our leisure. The 'demo' version is
identical to the full function commercial version of
CED except for one small limitation; you cannot save
files larger than 3 Kbytes. Files of any size can be
read in and manipulated in any way to investigate all
the editing facilities provided, you simply cannot
save to disk any file above that set limit. From
this 'demo' version I was able to determine that CED
would meet ALL my previously outlined requirements

and more, this is an excellent way to release a-

product.

CED also supports overscan if you wish to Tun with
larger windows than are available on the standard
Workbench screen. It can be set as 'memory resident’
although not in the standard AmigaDos sense, to
become active from a simple keyboard command. It
will work with lines of text up to 1024 characters
long and is limited in file size only by how much
free memory space you have on your system (even this
limit is currently under revision). A maximum of 10
windows can be open in CED at any one time and these
can be in the same file or different files if
required. There are so many other features that I
can only suggest that you get the 'demo' version and
try it for yourself. The disk also contains
'ordering' information which I have included at the
end of the article for anyone interested.

What else did I like? The extensive on-line help,
the best file requester I've seen ‘on any Amiga
product, fast text searching, very fast text
scrolling and, yes of course - the price - $30 US, to
which I added an extra $5 to cover return airmail
postage. The package was delivered within 4 weeks
and came complete with a 20 page well laid out and
helpful users manual.

August 1988

I have received excellent support for CED, including
a letter from CygnusSoft warning me that some of
their distribution disks had been shipped to users
with a virus on the boot tracks. They also described
the effects of the virus, how to check for its
existence and how to remove it from their disk and
any of mine that may have been affected (infected?).
Fortunately I had not booted to their disk, so my
system remains clean.

I have found only one small bug. I sent a report for
which I promptly received a reply acknowledging the
problem and informing me that it had been fixed in
the next version about to be released. Apparently
this is a fairly major new release which is available
to existing users for an update fee of $10. Their
general update policy is that you send them as much
money as you wish ($10, $20, $507) and nominate how
frequently you wish to receive updates at $10 a time.

CygnusEd is available from:-

CygnusSoft Software,
P.0. Box 383,

1215 Davie 5t,
Vancouver, BC,
CANADA VBE N4,

Phone: (604) 688-1085

Animation From C
by Alan Kent

In this article I thought I would pass on some
experiences I have had trying to use the animation
libraries in the Amiga from a C program. The kind of
animation I am talking about here is not the high
quality ray-tracing pictures uhich can be created
with programs like Animate-3D, or creating animétions
using other packages such as Aegis Animator; instead,
I wanted to try and write my own game (which I never
got around to doing). I will also assume the
background on which I want to do the animations is
static.

The first step was to try and understand the
primitives. Sprites on the Amiga are implemented in
the special graphics chips (the copper and blitter
etc). However, sprites can only have three colors
each, so I decided against using them. The next
thing I came across were Babs (Blitter 0Bjects).
These were similar in concept to sprites, except that
to draw a Bob, the background is overwritten. To
move a Bob while retaining the background involves
saving a copy of the background where the Bab is
going to be drawn so that it can be restored later.
To draw a Bob then involves saving the background,
then writing the Bob. To move the Bob involves
copying the saved background back, changing the co-
ordinates of the Bob, saving the background at the
new location and drawing the Bob. Things get a
little trickier when you have multiple Bobs on the
screen and they overlap. Luckily the Amiga library
routines take care of all this for you.

To do smooth animation however, you really need to
use what is called "double buffering". The problem
is when moving a Bob, the user will see a flicker as
the old Bob image is removed and the new one is

Amiga Workbench

Amiga Workbench Number 27

drawn. To overcome this, the strategy is to create
two background screens with the same background
picture on them. One screen is displayed while the
other is being updated. Uhen all the Bobs have been
moved, you flip the two screens (uhich can be done
very quickly without any flicker). This of course
takes up much more memory. A 32 color 320x200 pixel
screen requires 40K bytes of chip memory - so 80K
bytes if you went double buffering. All the images
for each Bob must also be stored in chip memory,
along with a buffer to save the background (two
buffers if using double buffering). So, 10 little
men (32 colors, 16 pixels wide, 32 pixels high, two
backup buffers) would require about 10K bytes. Not
too bad, but the more Bobs you want, and the bigger
you want them, the more chip memory you use up.

Reading further in the manuals, I discovered this
higher level function called Animate() which allowed
you to design quite complex animation objects (called
AnimObs) which could be built out of Bobs. The idea
was that if you wanted a man to walk across the
screen with his arms swinging, you could define a set
of pictures for the different positions of his arms,
a set of pictures for the different positions of his
legs and say a fixed body and head picture. Each set
of pictures were linked together using a structure
called AnimComp (animation component). Oh, one thing
they don't say in the manual is that each AnimComp
%wmwmthWatm%tmme%Minﬁordw
it gets into a real knot. The rate to cycle through
these images can be defined so the arms could swing
faster than the legs if desired. One thing that
confused me for a bit was an example in the manual
where they had a series of four pictures and two
pictures were the same (eg: arm forward, arm middle,
arm back and arm middle). What they were doing was
making multiple Bobs point to the same image in
memory while having separate buffers for each Bob to
save the screen background. Another advantage of
AnimObs was that you could define velocities and
accelerations as well as simple coordinates. These
values are all stored as fractions (contrary to one
manual which said the AnimOb coordinates were pixel
co-ordinates).

This seemed all well and great. The system allowed
you to develop quite complex objects which could move
and the system handled most of the work for you.
Then I tried using it all in a real application.

If you want to write a game, I advise forgetting the
Animate() function completely for a number of
reasons. First, having Animate() perform the
movements using the acceleration and velocity
information is generally too inflexible. You want to
force objects to move around the screen where you
tell them to go. Second, having multiple Bobs per
object slowed the whole system down due to having
more Bobs on the screen and as overlapping Bobs
require more work to manage. The third problem was
that it was very difficult to work out which Bobs
were currently on the screen. This is important if
you want to do Bob collision detection (to see if a
missile hits a space ship for instance). It is also
a problem if you want to force one man to be in front
of another {or even to define that an arm should
appear in front of the body) as you have to define
this at the Bob level using Before and After
pointers. Changing this information dynamically (for
example having two people walking around each other)

August 1988

Page 6

as the program runs is not fun. The real killer in
my opinion however was the sheer amount of memory
required. Every single image must be assigned a Bob
structure with backup buffers. AnimComp structures
must then be set up to group the Bobs into a sequence
(such as a swinging arm). An AnimOb structure must
then be set up to hold details about all the AnimComp
structures for the object. Having two identical men
allowed the pictures to be shared, but not the backup
buffers, Bob structures, AnimComp structures or the
AnimOb structures. Any slightly complex scene 1
tried to set up ran out of memory. There were other
problems too. In summary, I think the Animate()
function is next to useless as it is too restricted
in the way it can be used and too greedy for memory.

The solution I used in the end, which works quite
well and is fairly memory efficient, goes back to
using Bobs. Rather then defining the swinging arms
and things separately however, I drew a series of
complete pictures of a man walking along. This
allowed the man's body to bob up and down or do
whatever it liked while walking along. It was also
much easier than trying to synchronize separate
series of images too., To make the man walk, I
defined a single bob with two backup buffers, then
swapped the image it pointed to for each frame. Each
new man I wanted to create only regquired two extra
backup buffers (for double buffering mode). It all
ended up much faster, easier to control and more
memory efficient. Making sure the one Bob is in
front of another Bob is still a little tricky, but
not too bad.

This took me about a year to work out in my free

time, which was mainly spent trying to get the
Animate() function to do uwhat I wanted.

A . for the JM IGA.

APAL IS FULLY FEATURED 2 -DIMENSIONAL CAD

No compromise Computer Aided Drafting
is now available. APAL is Computer Aided
Drafting with all the features you need.
Proven user Interface based on leading
minicomputer CAD system. Fast and
accurate for high quality Plotter or Printer
output. Local support is assured.

Call or write for further details and nearest
dealer.

Version 2.2 now available

PRICE $250.00

BASFORD SYSTEMS

25 Neale St., Bendigo, Victoria, 3550
‘Telephone: (054) 43 3349

Page 7 Number 27

MIDI - Brinaing Machines Together
by David Galea

The music industry has long recognised the need for
the implementation of some kind of universal inter-
face to allow all keyboards to communicate freely,
and MIDI is an attempt to provide it. It stands for
Musical Instrument Digital Interface, and has opened
a new era in music for even the beginner.

After lengthy consultations with most of the worlds
major keyboard manufacturers, the format has been
drawn up by Sequential Circuits, maker of the famous
Prophet synthesisers, in close co-operation with
Roland., There are now very few manufacturers who
don't incorporate MIDI into most of their range.

The only physical feature of a MIDI instrument to
give it away is the inclusion of a couple of 5-pin
DIN sockets (as on your stereo) on its rear panel,
marked "MIDI IN" and "MIDI OUT", and these will allow
two-way communication between a pair of instruments.
Some models will have a third socket or "port" marked
"MIDI THRU" which allows the connection of more than
one instrument in a chain configuration, with the
first one in the line being the master, and controll-
ing the others. This is utilised to a great extent
by many modern bands who have a single keyboard held
in a guitar-like fashion, which seems to have a very
filling sound, but what you don't see is the other
- synths backstage pulling their weight.

The system is by no means limited to synthesisers,
but it's also equally useful as applied to electron-
ic pianos, other electronic keyboards, sequencers
and drum machines.

One of the really exciting areas opened up by MIDI is
that of being able to control many instruments from
your personal computer (Amiga). This has allowed
relatively sophisticated recordings to be realised
within the limited resources of a small home record-
ing setup, by programming the various parts to be
played simultaneously by the Amiga.

In the past this kind of interfacing has been solely
the domain of the electronically knowledgeable, or
the wealthy professional, who could afford the very
upmarket instruments, but now since the advent of
the Amiga, a new era has dawned and with plenty of
software support, its future looks bright ahead.

FFS and Jarnus — A Marriage Not Made In Heaven
by Eric Salter

When Workbench 1.3 becomes available, people with
. hard-disk drives will benefit from the new file
system - "Fast File System" or FFS for short. This
new file system is an alternative to the current file
system that we all have loaded on our 3.5" disks.
Its big advantage is the speed-up that will be gained
- from 5 to 40 times the speed depending upon the
operation. As of this writing however, people with
Bridgeboards and IBM ST-508 hard drives in which part
of the drive is partitiored for AmigaDOS, cannot use
FFS. We will examine why and pose a solution.

The file system is the process that allows us toc read
and write data as files. It is one of many tasks

August 1988

Amiga Workbench

that are running on the Amiga. This process, like
all processes, is part of an amorphous thing called
AmigaD0S. AmigaDOS itself is a library of routines +
a global data area + the "Global Vectors" of
processes + all the processes running - these include
the file system, the console (CON), PAR, SER, RAM
gtc. AmigaDOS works like this - if a process wants
to send data to a file on a disk or the printer or
whatever, it sends a message to another process that
is handling that thing. This process is known as a
handler and is the basis of AmigaD0S. A handler
responds to a limited number of requests that are
given to it in these messages. The messages are
known as "DOS packets" and are built on the Exec
message system and use Exec to pass them back and
forward between processes. The dos library comes
into the picture when we want to create these dos
packets. If a program wants to Open() or Close() a
file, it will call one of the functions in the dos
library - a process we can't go into here. This
function will then create the required dos packet and
send it to the relevant handler process via the
message system. This is totally transparent to the
casual programmer, but can be taken to its logical
conclusion - it is possible to ignore the dos library
altogether! (well sort of). If you know what type of
packet you want to send and where it has to go, you
can send it to the process directly without having to
go through the dos library routine. This method
offers less overhead in the long run.

The handler process, in turn, translates these dos
packet requests into the Exec I/0 functions that
control the device which controls the hardware. 0One
dos packet tequest can involve many operations at the
Exec device level. The file system process is Just
such a handler., The file system knows about
directories and files and drives with names like DFO:
etc. If it receives a packet request saying "Open
file 'x' on disk 'y' in directory 'z'", it knows how
to get at that information by looking at special data
structures that it has created on a disk. For a 3.5"
floppy disk, these data structures where written when
the disk was formatted. The file system requests
that the trackdisk device, that is the device
controlling the actual hardware of the disk drive,
bring in a particular track and sector. This sector
will have information that the file system can use to
look up where the file is on the disk. It then asks
the trackdisk device to bring in further sectors and
tracks. The trackdisk device does not have to know
anything about files and directories, only how to get
sectors of data off the disk. What is stored in
those sectors is the sole responsibility of the file
system.

FFS is a new version of this file system. What makes
it different from the old one is in the way it
organizes these data structures on the disk.
Currently, data in a file is stored in sectors along
with additional file system data structures. This
means that when a sector is read in from the
trackdisk device, the data has to be extracted from
the file system data before it can be used. This is
valuable processor time spent moving data around that
it really can't afford to do. This is why most hard
disks were slower than their IBM counterparts in data
transfer rates - the slow-douwn was in the file system
itself. In FFS, a sector of data is a pure sector of
data without file system junk. The practical upshot
of this is that a sector can be DMA'ed into RAM where

Amiga Workbench Number 27

it is supposed to go rather than into temporary
buffers where it is translated first. Another
feature of FFS is that sectors of one file tend to be
allocated to contiguous physical sectors on the disk.
This means that instead of loading one sector at a
time, an entire chunk of file cen be read in one go,
speeding up I/0 markedly. The final feature of FF3
is in the way sectors are buffered. In the old file
system, one could allocate a number of buffers to be
used as sector caches. Any sectors that were in
these caches did not have to be read in from disk -
or written out to disk until convenient. Under FFS,
these buffers or caches are used to cache directory
data - thus speeding up one of the most hated
features of AmigaD0S - the slooow directory listing.
Files whose names are known are found blindingly
fast. The final feature is the ability to have
volumes with more than 51 Megabytes size. The sky's
the limit now.

Now the problem. FFS cannot currently be mounted on

a Janus disk drive. The reason is that you cannot
format the disk for FFS. Under 1.3, the new format
command allows you to format a drive under FFS or the
old file system. Format expects to use the same
device commands as the trackdisk device.
Unfortunately, the jdisk device, which is the device
to control the AmigaDOS partition on the Bridgeboard,
does not support the FORMAT command, in fact,
Commodore supply their very ouwn command to format a
jdisk drive - DPFormat. The Amiga gives a little
grunt from the hard disk and then dies if you try to
format the jdisk device (JHO:) with the "format"
command .

The solution - the disk must be edited by hand to
make the correct image for FFS to recognize this as a
disk formatted under FFS. You need three things.

1. A correctly constructed entry in the mountlist for
the drive JHO: - something like this:

JHO: Device = jdisk.device
FileSystem = l:FastFileSystem
Unit = 0
Flags = 0

Surfaces = 4
BlocksPerTrack = 17

Reserved = 1

Interieave = 0

LowCyl = 0 ; HighCyl = 824
Buffers = 30

GlobVec = 1

BufMemType = 3

Of course this is just an example and your own
disk drive characteristics would have to be
considered when determining the number of tracks
and surfaces etc.

2. Using a disk editor that allows you to edit tracks
and sectors of any AmigaDOS device, mark the disk
as being an FFS disk. Track 0, Sector O, Surface
0 must have the following 4 bytes as the first 4
bytes of the sector: .

4 4F 53 01

which are the ASCII characters: "DOS(01)". Under
1.2 and 1.1, this used to be: 44 4F 53 00 or

August 1988

Page 8

--------------------- YT I e LT L T R R T T TS T AT RN R LN RN AL LI L

MEGADISC

-- IO TTT |

for the AMIGA
INFORMATION &
ENTERTAINMENT

Tssues
Available

All 7 issues of the MEGADISC Disk-Magazine contain the
information you need to make the most of your Amiga.
Designed to be easy to use, all you have to know is how to
click on the mouse buttons. Every issue is packed with
information - articles, tutorials, reviews, free utilities,
illustrations, where and how to get the hardware and
software you need, along with the latest updates locally and
overseas. With MEGADISC, you leam as you use, and you'll
like learning. MEGADISC explains from the beginning, and
entertains to the end. ** WATCH FOR OUR MEGADOS
AMIGADOS-ON-DISK MANUAL AVAILABLE SOON, WITH
SPECIAL OFFER TO CURRENT SUBSCRIBERS! **

.
Tersansarerrintaseee

SPECIAL OFFER!

hree more later.

Order ALL 7 CURRENT MEGADISCS now for $99 (a saving
of $40 over normal prices), and ask for 4 FREE disks from
pur Public Domain Library. If you don’t know which free
disks you want, ask for our Catalogue-on-disk and choose

300 PUBLIC DOMAIN DISKS FOR $5.50 EACH
All these disks are fully described on the Catalogue~on-Disk.
GET ANY 10 PUBLIC DOMAIN DISKS FOR $45
GET OUR "GAMES PACK" - 5 DISKS FULL OF GAMES - $25
WE DO NOT CHARGE FOR POST AND PACKAGING

:| enclose a Cheque/Money Order for ... of pleass charge my
‘BankCard/MasterCard No. Expiry.
: Please send me: Catalogue-on=Disk {$5.50): .cv.ecessresmsmssin

$ANY 6 issues of MEGADISC for $90 (please specify): wuuumwesmmmmns

+ANY 3issues of MEGADISC for $50 (please specify): ..,

S ALL 7 issues of MEGADISC for $99: w..cuummvviens .
+The 4 free PD disks | want {2 in the case of a 3-Issue sub) are:

$OR please send your Catalogue-on-disk now and | will choose the remaining disks later.

: Signature:
:Name:
+ Address:
Postcode;

Telephone: Date:

..

Page 9 Number 27

"DOS(00)". The reserved field in the mountlist
stops the file system writing over this DOS flag
by reserving the first sector.

3. Creating the Root directory. In the DOS manual,
the file system structure is discussed. The Root
block for both old and new file systems is
essentially the same. Fooling FFS into thinking
this is an FFS root block imvolves making a false
root block with all hash table entries set to ZERO
and marking the bitmap true flag as false i.e.,
offset 78 (the 78th longword in the sector) set to
ZERO. The Root block is located in the middle of
the disk between the high and low cylinders. Now,
mount the disk with the command:

mount jhOs

not as before with DjMount. This should now tell
the system to load FFS from the L: directory and
use this to access jh0:. The rootblock has been
set up such that the restart validation process
will see the bitmap true flag as being false and
will set about re-validating the disk, thus
creating the bitmap sectors and sparing out those
sectors owned by the system - the root block, the
bitmaps sectors and the one reserved sector. You
should now have a validated hard disk running FFS.

1 hope this will help developers play with FFS on the
Janus system and act as a stop-gap measure until
Commodore get their act together and re-write the PC
Emulation software to run properly.

Deluxe Laser Painting
Computing for Fun and Profit
by Neal Glover

"The Amiga is a great graphics work station" (among
other things). That's the reason why I bought it,
and I have certainly found that statement to be true.
My line of work involves graphic art, mainly for real
estate advertising (sketching houses and so on), and
while most drawings still need to be done using good
old pen and ink, the Amiga is becoming an increasing-
ly invaluable tool of my trade. D-Paint 2 PAL and
Digi-View PAL are my favourite packages as they are
such a versatile combination. From what I've seen of
Photon Paint, it looks like it also will be added to
the favourite package list.

Much of the work I produce on the Amiga starts life
as a digitised photo, artwork or sketch. (The house
on the cover of Nov '87 Workbench, the F-16 on the
March '88 cover and the church on the front of the
April '88 issue are such examples. The process,
then, is to simply trace over the digitised image
using D-Paint 2 (or similar), and then remove the
excess shades using the palette control. I say
"simply" about tracing, but it's not really so
simple. Perspective is difficult to get exactly
right, and most photographs distort the perspective
to an unacceptable degree for drawing purposes. All
this has to be manually corrected, and is a long
process, especially drawing lots of detail in high-
res. D-Paint's "Perspective" function will only put
perspective onto a 2D object by rotating is about 3
axes and adjusting the spectator point. True 3D
perspective requires other methods, some of which can

August 1988

Amiga Workbench

be used in conjunction with D-Paint's "Perspective"
function. (eg Pasting a label on the side of a box
drawn in perspective. Indeed, the label may form one
entire side of the box, and a 3D object can be con-
structed in this way. But for complex drawings -
forget it!).

Hopefully, somewhere in this edition appears a draw-
ing of the "Colonial Hotel", which had to be draun
from scratch on the Amiga - no Digi-View here! (The
"Colonial Hotel" drawing is copyright as indicated,
so please don't go re-copying it!). Although the
final print is in eight shades, the initial line
drawing was done using only four colours, in hi-res.
A line drawing has only two shades - black and white,
so why four colours rather than two? Well, it so
happens that the other two spare colours are very
useful for drawing perspective guide lines to the
imaginary vanishing points that all perspective draw-
ings (ray tracing and other number crunching methods
aside) require. As they are only guides, they can be
removed later by a palette adjustment, leaving the
drawing in black and white. A line drawing in which
proper perspective is not critical, or doesn't exist
(plans and elevations), needs only two colours. The
fewer colours the better if you are using hi-res.
Large brush manipulations can be a problem even with
2.5 megs, as chip RAM sometimes doesn't go far
enough. (Roll on Fat Agnus!).

As all my drawings are output to a laser printer,
they are all done in beautiful living B/W - at least
until somebody comes up with a cheap colours laser!
Grey scales are easy to set up in D-Paint 2 using the
"spread" function of the palette. Of course, digit-
ising in B/U does it automatically. D-Paint 2 and a
laser are quite a good combination for producing
leaflets and handbills, although bit-mapping re-
stricts the quality somewhat (Postscript Desk Top
Publishing it aint). Again, anything like this is
best done in hi-res with as many colours as you' need
or your RAM can handle. Hi-res minimises the bit-
mapped effect., The bigger the page the better. An
A4 page is best set up with a D-Paint page size of
640 x 904, 2.5 megs is adequate for such a page size
in 16 colours, although brush manipulation may be a
bit tight. This gives good resolution on the print
without the need to scroll sideways on the screen.
The bit-mapped effect can be further reduced by using
hi-res fonts such as the excellent "Pro Video Fonts"
by JDK. "Smoothing" and "Anti Alias" functions can
also be useful, but as many shades as possible must
be used to get the full benefit from these functions.
Up until recently, printing out Deluxe Paintings on
my laser has been a bit of a disappointment, in that
the Amiga wouldn't drive it at its full 300 DPI.
That's all changed thanks to the new preferences and
printer.device soon to be seen in AmigaD0S V1.3. I'm
running a Ricoh PC Laser 6000 with a HP_LaserJet_PLUS
card and 1.5 meg RAM (for full A4 graphics). The
results are really pleasing (with 300 DPI!)., Hope-
fully by the time you read this, Ricoh will have
brought out a Postscript card for the 6000. (Pro-
fessional Page here we come! - looks like being an
excellent program).

I recently hired a Mac SE to check it out with some
DTP/graphic programs (Pagemaker, Mac Paint/Draw etc).
The only program that impressed me was Adobe Illus-
trator. I wouldn't be disappointed to see that or
something similar for the Amiga. However, after

Amiga Workbench Number 27

recovering from what Pink Floyd would call a "Moment-
ary Lapse of Reason", I returned the Mac with an
Amigan smirk on my face. Keep trying, guys! Ser-
iously now, the Mac just didn't seem to cut it with
Amy's graphics. However, the Mac's list of available
peripherals are impressive. Digi-View is a fine
program, but a scanner (preferably a flat bed) would
be nice as well as a few other toys to keep graphics-
gurus happy. Hopefully with good DTP packages such
as Professional Page appearing, local typesetting
bureaus will be connecting Amigas up to their Lino-
tronic typesetters. I'm planning to go 300 DPI Post-
script, and in addition to me normal work, hopefully
will be able to offer AUG members a Postscript print-
ing service.

That's enough from me now - happy number crunching.

Uninvited Review
by Glen Sheppard

Uninvited is a text adventure in which your car has
crashed and you go to a nearby house (which just
happens to be haunted) to use a phore. Inside this
house, there are several rooms, some halls and
towers. There is supposedly a telephone, kitchen and
several other rooms which I have never been able to
find, Secret passages are also around the house, but
who knows where they are?

I have noticed that in magazines lately, Uninvited
never seems to be printed on the software lists.
Uhether this is due to lack of sales, I don't know.
I don't know of anyone else with a copy of Uninvited
on the Amiga, let alone any other computer. I would
love to hear from anyone else with the game.

Overall, I'd rate this game as quite good. Graphics
are good, and sound isn't fantastic but adds some
life to the adventure. All movement is through the
mouse, so you can sit back in your chair and not have
to type. A "save as" mode allows you to come back to
your current position, but you must save it onto a
separate disk like Flight Simulator II.

For me, Uninvited would be worth the money if I could
find the things I mentioned above. If anyone does
know where these passages are write in and tell me!

Test Drive Review
by Glen Sheppard

Does driving a car along a mountain road socund fun in
your old car? Why don't you trade it in on a Ferrari
or a Lamborghini? Your neighbours will suddenly
become your best friends. Too cold to go and look at
all of these cars, eh? Rubbish, all you have to do
is pull backwards or forwards on your joystick teo
choose the car that's right for you.

The object of the game is to drive a Ferrari,
Lamborghini, Porsche, Chevy or Lotus along a twisty
mountain road to the next petrol station in the
shortest time possible. To succeed in this game you
have to dodge cars, trucks, potholes, rocks, the
cliff's edge, the police and the odd dropping from a
passing bird. The best score I have achieved between

August 1988 Page 10

one petrol station is a huge 69900 with a total score
of 121880 in the Ferrari.

Now for a hint. I find that when I am driving too
fast and look like crashing in a sharp corner,
holding down the joystick button the car will take
the corner itself. But beware, because when you
release the button, your tyres will head the same way
they were before you pressed the button, so be
careful.

One complaint I do have with Test Drive is that if
you have sped up when the radar detector goes off,
the police can still overtake you even if you reach
150+ mph while their car is in your rear-view mirror.
A picture on the back of the box shows a part of
scenery that I have never seen during the game,
perhaps this is contained on the mysterious scenery
disk that is rumored to be in the making.

I enjoy this game for its great graphics although
there is no variation in scenery. Sound effects are
very good with engine, tyre, radar and theme music;
game control is with a joystick.

I would recommend Test Orive to anyone who likes to
drive very fast, it's safe on your Amiga. Test Drive
is a relatively cheaply priced game at only $49.95,
considering how much detail is in the game.

An interesting point is that the music from this game
can be used in Deluxe Music Construction Set, and the
title screens can be viewed on Digi-Paint and
transferred to DPaint 2 if you wish to change colours
or something.

Silent Service
by Glenn Sheppard

Silent Service is a game based around a llorld UWar 2
United States Navy submarine and its confrontations
with the Japanese Navy, with you in charge of the
sub.

Once the game loads, you have a choice of torpedo/gun
practice, Convoy actions or a War patrol, which can
last 57 days. After your decision, you choose
difficulty level, rank and features of the game which
include accuracy of destroyers, when you can repair
your vessel etc).

Your mission is to sink as many enemy ships as you
can without getting sunk yourself. Enemy ships
include destroyers, cruisers, kaibookans, aircraft
carriers, troop ships, tankers, and cargo ships.
Your submarine is armed with torpedoes, both front
and rear (which have a range of about 5000 yards) and
a deck qun (with a range of about 3000-5000 yards,
depending on sea conditions). Your mission starts at
one of three bases, and you navigate the sub around
with the mouse, joystick or cursor keys.

This game has good graphics (periscope views, maps,
gauges, the bridge and ships on fire), realistic
sound (sirens, torpedo launching, scnar, gunshots and
explosions), and easy control over your movements.
On the negative side, changing between the screens to
a different room in the sub is slow.

Page 11 Number 27

Games SIG Report
by Luke Devlin

R great turnout at the AGM July meeting. Congrat-
ulations to all those who were voted in, and thanks
to all those who nominated for any positions.

At the July edition of the Games SIG, we showed sev-
eral new games just right for the Amiga's capabilit-
ies. These were Bubble Bobble, Barbarian (the other
version with two sword fighters and the gremlin who
kicks the decapitated head along like a soccer ball),
Space Racer (the speed biker game), Pink Panther (all
20 seconds of it), Kickstart II, Joe Blade, XR 35
(all 30 seconds of it), Roadwars, Interceptor and
B.M.X simulator. We had a lot of fun with some of
the harder games like Pink Panther, as I can only
last for 20 seconds. XR 35 is another hard game, and
I challenged other members to get more than 30 sec-
onds into the game without getting killed. Anthony
almost lasted but was killed right on the buzzer. Ue
found an expert at Kickstart II to show us what it
was all about, and Raobert showed us BMX Simulator and
all those sneaky short cuts. Another keen games fan
killed me several times on roadwars to the satisfact-
ion of the crowd. Also we helped people with answers
to their questions on games, parts that they couldn't
get through, where you should purchase, the best
price, is it better to purchase from the states and
SO on.

Don't forget to bring aleng your latest games to the
next Games SIG, hoping to see YOU there!!!

Games SIG organizers are Luke Devlin, Anthony Woods,
Robert Nunn.

SMAUG Report
by Doug Myers

No! SMAUG is not the name of an elusive dragon
invented by J.R.R.Tolkien. It is the acronym for the
Sub-group Music AUG, and it was the first interest
group established within the Amiga Users Group.

The first SMAUG meeting was held on the 8th of
February 1987 at Roland Seidel's house in Box Hill,
and Roland was elected as the first co-ordinator of
the group. Roland's house was about three minutes
drive from the Burwood Teachers College where the AUG
Meetings were held and so it became a pleasant duty
for the members of this growp to drop into Roland's
before the main meeting, quaff down a champagne or
two and watch a demo or listen to some music on
Roland's setup. The group went from strength to
strength until our committee heard of its success. An
urgent meeting was called and it was decided to
change the venue for the AUG meeting to Monash.
"That should fix those boozing musos™ one of the
gogmittee members was heard to say. And it nearly
id!

SMAUG was allocated a small room in a circular
building and the members had to carry gear from
everywhere for the demos. It was getting to be more
difficult. The booze stopped flowing and the musos
began to look a little limper. Fewer faces were seen
in the Rotunda. The demos began to sound the same.
The feet stopped tapping. Had the committee won?

August 1988 Amiga Workbench

Was it Sunday or Saturday? Who cared anymore?

At 4.30 on the afternocon of the Annual General, a feuw
old and new SMAUG members congregated without Amigas,
midis, synths or bgoze to contemplate the situation.
The news had come that Roland had resigned. Would
SMAUG go the way of other interest groups when their
co-ordinator resigned? All agreed that Roland had
done a very good job, but he wasn't indispensable. le
were cheered to hear that he would still write music
articles for Workbench and be a part of SMAUG, and
then we contemplated the Future. How could we get
back to enjoying the music and foiling the Committee
at the same time?

There were several problems. The first was the
specialised gear needed to demonstrate music and the
second was the different levels of expertise amongst
the members of SMAUG. It was decided that a new co-
ordinator was needed but the best offer we could get
from the floor of the house was for a three month
period only. The idea was put forward that we might
use member's homes for demonstrations and they could
provide the gear and demonstrate their setups. us
also had the offer of the use of a professional
computer music centre on occasions. SMAUG was seen
as a special interest group which, like the video
people, had to meet in specialised surroundings and
probably outside the regular meeting times.

It was decided that the next meeting of SMAUG would
be held at the Rotunda as usual after the August
meeting. The meeting would contain some of the
latest examples of public domain software available
in the music area that are guaranteed to keep the
feet tapping. If time permitted, there would be an
introduction to Larry Spiegal's Music Mouse. The
main purpose of the meeting would be to decide on the
future venues and times for SMAUG meetings and to
elect a co-ordinator and perhaps a committee to help
organise the activities of the group. {
This is an appeal to all the members of SMAUG to
attend and bring back the beat which has been
getting slower and softer. In this edition of
"orkbench" Roland has submitted "The Idiot's Guide
to SoundScape", the first of a series which we must
produce called "The Idiots Guide TO.eeeees.". Please
think of ideas which will help to make SMAUG more
interesting for you and bring them to the meeting.

The co-ordinator of the August meeting will be Neil
Rutledge whose address is 13 Marshall Ave. Highett
3190, phone 5897 0928. Give him a ring if you have
some ideas which won't wait.

[Editor's Note: Unfortunately, Roland's article

hasn't turned up in time - maybe it'll appear next
issue.]

AUG Business SIG
by Neville Sleep

The July meeting of the AUG Business SIG was not
attended by its originator Chris Noble, however there
was enough interest for such a SIG to develop into a
sizeable group.

The format of the group at its first meeting was as a

Amiga Workbench Number 27

general discussion on the Pros and Cons of general
business software, with inexperienced members such as
myself gaining valuable clues on the operation of
various programs and finding some features we
previously never knew existed. The format for future
meetings may change as the viewpoints and preferences
of members become apparent.

At the August meeting of the AUG Business SIG, John
Barlow will have an Amiga available to demo
"Maxiplan" and will be available to answer any of
your questions. Demonstrations of other programs and
devices have been arranged for future meetings and
should ensure interest in the SIG well into the
future. '

The history and future of the C SIG (Beginners)
by Mal Woods, C Sig Co-ordinator

Many meetings ago at Burwood Teacher's College, SIGs
were announced. It sounded like a good idea to me.
People with like interests meeting separately to
discuss their chosen topics. Out of the SIGs that
were available, I decided to attend the Graphics SIG
as it was the topic that interested me the most. So
accompanied by some close friends, we sat in the back
row in an attempt to NOT volunteer for anything.

During the discussion it became obvious that there
were a couple of different opinions as to what the
group should be doing. Some wanted to know how the
graphics routines worked and how to use them while
others wanted to use packages which already exist to
produce pictures. I was of the first group. Those
in this group decided that to be able to call the
graphics routines they would have to have at least a
rudimentary knowledge of C and it was decided to form
a C SIG to focus on this point. But who to control
such a bodyeaes

Bob Scarfe was attending to help us get started and
when he asked for a show of hands as to who would
attend a C SIG, I and all my friends put obliged.
Bob took out a piece of paper (as though to start
taking names) and pointed at me (the person closest
to the left wall) and asked for my name, which I of
course gave. Instead of asking the next person for
their name Bob announced that I would be the coordin-
ator for the new C SIG. I was a little taken aback.
I knew little C and as such thought I would not be
qualified. I also ran ancther computer club and
already had a lot of my free time taken up with the
organisation of this club and the production of the
newsletter. But still I thought I would give it a
try and after the meeting I talked to Bob and he
assured me he would do anything to help me out. My
friends also assured me of their assistance.

Well a month went past and the next meeting came
around and I cautiously took my place in front of a
reasonably large crowd to try and organise things.
They were a reasonably friendly bunch {nothing was
thrown), and in discussions with them it was found
that a majority of them didn't know C and would like
to leam it. "Fine", I said, "It just so happens
that I have a public domain C tutorial which I have
started to work through which we could all do toge-
ther." There was a general agreement amongst the
beginners and a slight moan from the gurus in the

August 1988

Page 12

front row.

We then proceeded (with the help of the gurus), to
write a small C routine on the board concerning the
state of a wombat crossing the road. This choice of
topic was not only educational, but amusing as well.
I left the meeting with high spirits of what was to
come.

I don't know what I did wrong at that meeting but the
number that attended the next one was significantly
fewer. We struggled on regardless. Our store of
gurus had been reduced and my preparations were not
the best, but we successfully started the training.
Copies of the text were handed out and examples were
written from my originals on the black board by Peter
Jetson who also sat in the front row and corrected
all the mistakes I made. He was a great help at that
meeting and many to follow.

At the later meetings (at our new location), I got a
bit better organised. I had prepared overhead pro-
jector slides with the examples on them. I didn't
want to have handouts with the examples on them as I
thought that people would learn them a lot better if
they wrote them down. Things went well, but attend-
ance continued to drop off. Some people at the earl-
ier meetings contacted me and got a copy of the tut-
orial for themselves (my friends among them). After
that had that they had no further use for my SIG. I
was killing the SIG myself. Peter found that with
the extra responsibility associated with the club he
could no longer attend. Eric Salter filled in nicely
for a time until he left to start up his own SIG
(Advanced C SIG). i

At one meeting I had all my slides ready but no one
could find the overhead projector, so we had to re-
vert back to the blackboard method. After this, I
decided that photocopying the examples would signifi-
cantly hasten the learning process. It certainly
did. We went through a whole chapter and a half in
one sitting (a record that has not been broken
since). Ue also missed a meeting due to a demonstra-
tion taking place in the room we were supposed to be
in.

At the last meeting Bob met with the SIG leaders
after the main meeting to express his concern with
the way the SIGs were run., Some SIG leaders didn't
organise replacement leaders when they were unable to
attend, others just stopped turning up and their SIGs
fell apart. He wanted us to try and run the SIGs
like the club was run (with a committee and an elect-
ion of our own). My SIG does not really fall into
the mold defined by Bob. When I went to the meeting
there was a lowly four people there (a couple turned
up later), but if a committee was elected then every-
body would have a position, so I politely ignored
Bob's suggestions and continued on as normal.

Bob didn't let me off so easily. He walked in and
all those that attended discussed with him the future
of this SIG, Though we thought we could not be like-
ned to the Beginners SIG (who have 4 lessons which
they repeat over and over again to cater for new
beginners who enter the club), we had a lot more to
go through (we're only up to Chapter 7 now). Ue came
to an agreement that to try to appeal to others in
the club, we would turn things around a bit. Instead
of going through the tutorial in the SIG, those who

Page 13 Number 27

wanted to learn would take home the notes and teach
themselves between meetings. At the meetings them-
selves we would help people with problems they had
with their (simple) C programs (with priority given
to the examples in the tutorial) and hand out the
next chapter to be studied at home. I decided to
bring my Amiga along so that compilations could be
done there and we could try to determinme the answers
to any problems raised.

What all this above blurb is getting to is that 1
nesd your help in two ways. If you are a beginner
with problems in a C program you are working on then
please bring it along on a disk and we will attempt
to solve it for you. If you are an expert please
come along and help us solve these problems. I still
don't know a lot of €, but I'm getting there. With
your help, we can provide a useful service for the
members of the club. It may be that we will change
our name to the Beginnmer's C Problem Solving SIG.
Who knows. Come along and have a say. Please.

Advanced Graphics SIG
Meeting 3
by Geoff Holden, the Reluctant Convenor

Well. It seems that the Holden Show and Tell
Traveling Circus, also laughingly knouwn as the
Advanced Graphics SIG is about to change into
something deep and meaningful and useful. T will
pause until the cheering dies down. This came about
because (a) Bob Scarfe, our beloved President,
descended upen us like a fiery angel, sword in hand,
and demanded that we organise, clarify and generally
clean wp our act, (b) I have some additionmal work
commitments that you wouldn't believe, and as you
wouldn't believe, I won't tell you about them and (c)
it was getting so boring, I'd stopped laughing at my
own jokes. So.... a Gang of Five has been appointed
to make Advanced Graphics the Colour of the Month and
generally laugh at my jokes.

The innocents involved are: Dick Bartholomew, Joe
Santamaria, John Barlow, Dan Davies and Your Humble
Servant. The idea is that we should meet, in between
AUG meetings and plan delights for ourselves, and -
with any luck - you lot out there. The three ring
circus sounds like a start...

I am not publishing the phone numbers of the Gang of
Five - yet. This is a weapon I will reserve for
disobedience (not helping, not laughing at my jokes,
etc). I will probably continue to stand up front and
gibber, since no-one else thundered forward to
volunteer for that mouth-drying duty.

Meanwhile, back in the real world, at the July
meeting, Con demonstrated some more of the DMuURender
public domain ray tracing program. The ability to
add a variety of textures to the shape primitives was
the most interesting feature of the program ~ if only
it didn't have such a ghastly input system for data!
Mind you, if it was as uniformly good as its best
features, I would weep all over my wallet for having
bought Sculpt and Animate 3Ds for more money than I'd
ever tell my children. Con will probably continue
his demonstration (a sort of Dance of Death with the
Guru) at the August meeting.

August 1988

Amiga Workbench

So, if you raytrace in your sleep or practise solid
constructive geametry on yeur accountant, then octree
your way along to our new, improved, non-singing and
absolutely dance free Special Interest Growp at the
August meeting. We'll see both of you there.

Introduction to the "C" Programming Languane Part 4
by Eric Salter

Last episode, we looked at the tools of the "C" pro-
gramming environment. This time we will look at the
basics of the language itself. This is not meant to
be an extensive tutorial on "C", but hopefully it
covers the main features and structure of a "C" pro-
gram. Ideally, it should facilitate understanding qf
the copious amount of Amiga documentation written
with the "C" programmer in mind.

A C program is simply a text file that you create
with a text editor or word processor. You cannot Tun
it directly because it has to be compiled. A C com-
piler must read your text file and convert each C
statement into the binary code that your particular
CPU understands and can execute directly. After
this, your C program will rum as a machine language
program - fast, unlike BASIC, in which the BASIC
interpreter must interpret uhat each statement is
doing, every time the interpreter reads them. Anoth-
er advantage is that a C program stands alone. It
doesn't need any "run time" package to be in memory
with it. A BASIC program needs the BASIC interpreter
to meke it do useful things and therefore C programs
(usually) require less memory to achieve the same
result as an interpreted program.

The C program consists of several sections which are
part of every complete C program (but not necessarily
part of every C source file): ;
}
Pre-processor directives, macros etc.
External Function and Variable declarations
Static Variable declarations

main() function
Function 1
Function 2
Function 3

L
Function n

Every complete "runnable" C program has a "main()"
function. It is not necessary however, for all C
code to have this function before it is compiled.
Programs can be constructed from a number of separate
"C" gource files that have been compiled independent-
ly. Only ore of these files need have the main()
function defined. The necessity for a C program to
have a "main()" function is due to the fact that at
"1ink" time, when the executable code is created, the
lirker brings the code modules together such that
your program will begin executing from your "main()"
function. In fact, many of the statements in a C
program are references to functions that are not
defined in your program, but instead reside in 1lib-
raries of functions or other code modules outside
your program and are lirked in to your code by the
linker.,

Amiga Workbench Number 27

Pre-processor Directives

Any line in a "C" program with a "§" in the first
column is not part of the C language per se. "State-
ments" here are called compiler pre-processor direct-
ives and belong to the compiler. They are never
executed but are acted upon by the compiler when the
"C" text file is read in. UWe will defer looking at

pre-processor directives except for the more common
ones.

#include - The include directive

The "#include" directive conceptually stops your
program text being read in and causes the file listed
after the "finclude" to be brought in and inserted
into your code at that position. The most common use
for this directive is to bring in standard headers
that contain definitions of system constants and
functions related to file access or the operating
system. These definitions, once read in, can be used
as if they were part of the code. The "C" compiler
will compile these header files along with the rest
of the code in the file. The names of these files
are system dependent but some fairly constant ones
are:

#include "stdio.h" -~ I/0 macro definitions

#include "ctype.h" - character testing Macros/type
def's

#include "math.h" - on UNIX systems define special

math functions.
vAnd some on the Amiga:

#include "exec/execbase.h" - Exec library structure
defs

- AmigaD0S interface
structures

#include "dos.h"

You will note that the name of the file you wish to
bring in is enclosed in double quotes. This causes
the compiler to search for the named file in a par-
ticular place, usually the current directory. If
instead, we use angle brackets <> to enclose the
name, this, depending upon your implementation, will
cause the compiler to search for the file in the
directory that contains standard header files - Quot-
es on the Amiga under lattice 3.10 searches the cur-
rent directory first, then the "INC:" directory,
whereas brackets search ONLY the INC: directory. On
UNIX, the include directory is "/usr/include". In-
clude files themselves may contain further "finclude"
directives and so on. This is called nesting and
there is a limit, depending on the compiler, as to
how many levels we can nest this directive.

#define

The fidefine directive allows us to make extensions to
C by defining macros. A macro allous us to define a
shorthand way of expressing constructs so that they
convey more meaning as to what is.actually done than
would the construct itself, It alsoc may save key-
strokes! The simplest form of macro is substitution
as with constant definitions:

#define MAXLINENUMBER 6B

From now on, references to MAXLINENUMBER are equiv-

August 1988

Page 14

alent to decimal 66. Not only does this convey more
meaning than a raw "66", but it allows us to change
the constant at one place in the text and have it
changed throughout the program should we need to at a
later date. The other use of macros is making simple
from the complex:

#define max(x,y) ((x) > (y) 2 (x) ¢ (y))

Here, we have defined the macro max(x,y) with param-
eters. With each use of max(x,y) in our program, the
compiler will substitute the code x >y ? x ¢ y (the
ternary operator). This makes the code, not only
simpler, but more easily understandable. 1In one
issue of BYTE magazine, there was an article descr-
ibing a way te vandalize C by re-defining "{" as
"begin" and "}" as "end", to make C look like Pascal
code. Please, don't make C harder to read than it
is. Note that a macro, such as the one above, is not
a function call! It will be expanded into code, "in-
line". Please be careful therefore, as expressions
passed to macros may be evaluated twice. This may
become the source of program bugs if you pass an
expression with function calls or ++ or -- pre/post
increment/decrement type operators (it will evaluate
for each occurrence of the operator!).

Functions

Functions are part of all C programs. The main{)
function is also a function - the place where execut-
ion commences. Once a function is written and debug-

‘ged, it doesn't have to be re-compiled, and we can

think of it as a black box where what goes in and
what comes out are known, but the mechanics of how it
works become unimportant - we have added a level of
abstraction, each level up being closer to the over-
all concept of what the program is doing. You could
think of a program as an hierarchy of administration
functions, each with the task of overseeing part of
the job, with the workers at the grass roots doing
the real work. The concept of functions that are
units in themselves saves us re-inventing the wheel,
and C programmers often develop their own library of
functions that they have created over the years and
use in their everyday code as if they were part of
the language. The structure of a function is:

type function_name(argument_list)
argument declarations

declarations and statements usually
including a "return()"

}

For example, the max(x,y) we defined as a macro could
also be written as a function:

int max(x, vy)
int x,ys

x >y ? return(x) : return(y);

}

Here we have defined our function called "max" to be
a function which will return an integer. It has the
formal parameters "x" and "y", which are defined as
integers. The body of the function is the ternary
operator as before, except that the statement
"return()" is passing control and an integer value
back to the calling function. We can see that a

Page 15 Number 27

function can have multiple terminmations. For pur-

poses of explanation, the function could also have
been written as follouws:

int max(x, y)
int x, y;

if (x > y)
return{x);
else
return(y);

}

Note also that we have defined the two arguments "x"
and "y". We must do this as these are not the same
variables that the function will be called with, even
though they do, of course, have the same value. They
are local to the function. Whatever we do to these
variables cannot affect the real variables in the
calling routine. We will look at this again when we
talk about the scope of variables as being one of the
attributes of a variable.

Call by Value vs Call by Reference

In the above example when we call the function, prob-
ably from main(), as in:

max(new_value, old_value);

the variables '"new_value" and "old value" are the
actual parameters we use. These variables are passed
to the function by value. This means that the actual
values of the tuo variables are copied into "x" and
"y". We never actually compare the variables
"new_value" and "old_value", but copies of them
passed in "x" and "y". "x" and "y" are local to the
function and have no scope outside its call and are

destroyed (de-allocated on the stack) upon return.

For a function to effect a change in the variables
outside itself, that variable must either be an ext-
ernal variable, that is one with global scope, or the
variable can be passed to the function by reference.
In call by reference, the address of the variable in
memory is passed and this is used by the function to
access the real variable. The address of the var-
iable is a pointer to that variable.

Pointers give C great power, but they can be danger-
ous in functions if you don't remember that you are
operating under call by reference. You may destroy
the data you are operating on. Note that functions
themselves have global scope for a given compilation
unit so that any function can call another. Funct-
ions can also call themselves, ie recursion!

Next month we look at pointers and arrays. Ue will
spend some time on pointers as these form the basis
of the power of C. UWe can have pointers to vari-
ables, pointers to arrays, pointers to arrays of
pointers, pointers to structures, pointers te func-
tions etc...,

Variables, Types, Operators and Expressions

These are the building blocks of a language (or
Constants aren't, Variables won't).

August 1988

Amiga Workbench

Variables

No matter what language you use, there are things
called Variables where the data you are operating on
is held. A variable has several characteristics,
those being a Name (or identifier), a Type, a storage
class, and a Scope - i.e. Who is it, what's in it,
where is it and is it there still?

Variables are a group of things called objects. An
object is a region of storage which cen have oper-
ations performed upon it - also called an "lvalue" in
"C". There are two broad classes of object -
"simple" and "aggregate", the "aggregate" types being
constructed from collections of simple objects.

Variable Jdentifiers (Names)

A legal Variable identifier in "C" is made up of the
alpha-numeric characters (a-z, A-Z, 0-8) plus the
underscore " ", and the first character must be a
letter. "C" is a case-sensitive lanquage, which
means identifiers which differ in case are different
identifiers, e.g. "Count" is different to "count" or
"COUNT" and refer to different data objects. The
number of characters in an identifier name that are
significant (that is, the number of characters that
are compared before saying that two identifiers are
the same) is dependent on the compiler implement-
ation. The original K & R manual states this number
to be eight, the proposed ANSI "C" suggests only the
first six, most Amiga compilers have at least thirty-
one (Lattice 3.10). An added complication is that
identifiers used by the linker, ie external variable
or function references, may have fewer significant
characters than those used within the program code.
The practical upshot of this is that uwhen writing
code that you hope to be transportable across com-
piler-lirker combinations, identifier length is one
of the considerations. The other important restrict-
ion on identifier names is that they may not have the
same name as the reserved key-words of "C"/like
"else", "if" etc.

Types

Along with ap identifier, an object is associated
with a particular type. The "type" of a variable
determines the meaning of the data that is held and
can be held within it, ie how to interpret the bit-
pattern of a region of storage (lvalue), and what
operations can be performed on it. The simple ob-
Jects have one of the "arithmetic types", so called
because they can all be interpreted as numbers.
There are two sub-classes of "arithmetic types" -
"integral types" and "floating types".

The integral object types - char, int, enum

char The char type can hold any member of the mach-
ine's character set. On the Amiga, a "char"
is 8 bits (1 byte) long and can store any
ASCII character. A "char" can therefore take
o? any value between 0 and 255 or -128 and
+127.

int The size of "int" is the natural size of the
CPU's registers. Under the AmigaDOS environ-
ment, this is 32 bits (4 bytes) long. Values
between 0 and 4,294,987,295 or -2,147,483,648
and +2,147,483,647.

enum The enum or enumeration type is a new edition

Amiga Workbench Number 27

from ANSI "C". It is similar to the type
"int", however an object of this type may only
take on values from a list of identifiers at
its declaration.

The floating object types - float, double

float Single-precision floating point values may be
held by cbjects of "float". Numbe§? with
fract%gnal parts in the range -1 x 107" to +1
x 10* This number is stored in IEEE format
in 32 bits (4 bytes).

double Double—precishmad;oating poinE_ uves in the
range -1 x 10~ to +1 x 10 This is
stored in IEEE format in 64 bits (8 bytes).

Pointer obiects

Pointer objects are also arithmetic types, but con-
tain numbers that point to other objects. All point-
ers in the AmigaDOS environment are 32 bits long and
are unsigned values between 0 and FFFFFFFF (hexa-
decimal), Pointer arithmetic differs from that of
other arithmetic types and will be covered in detail
when we look at pointers.

Type Modifiers

There are also some qualifiers of the basic data
types. These qualifiers are called type modifiers
and affect the size of the object and the interpret-
ation of its contents.

Size modifiers affect ints:

short int - or just int is 16 bits (2 bytes) long on
the Amiga.

long int - or just long, is equivalent to int.

Sign modifiers affect char, int:

unsigned - all bits of dbject used for magnitude,
all numbers positive.

signed - most significant bit used for sign (+/-)
and the rest used to hold magnitude.

Scope and Storage Class

In C, there are four declarable storage classes:
automatic static external register

The storage class determines the location and life-
time of the memory resource associated with a partic-
ular identifier. We have said the structure of a C
program is made up of blocks (although "C" is not a
true block-structured language). Variables will have
a certain life within these blocks. The scope of a
variable may be either explicit in the variable's
definition or implicit by virtue of the location in
which the variable was defined.

Automatic variables are created upon entry into the
block in which they were defined and are destroyed
upon exit from that code block. They are local to
each invocation of a block and are undefined outside
that block. A variable is automatic by virtue of the
fact that it was defined inside a block - implicit
scope. A variable may be explicitly defined as being
automatic by the use of the storage class modifier

August 1988

Page 16

"aute"., Memory for automatic variables is allocated
on the stack. The contents of memory on the stack is
unknown and as such the contents of the variable is
unknown.

Static variables are local to a block but retain
their value on exit from the block and will still
have it upon re-entry of that block. Static varia-
bles defined within blocks must be explicitly declar-
ed to be such by the use of the storage class mod-
ifier "static":

static int count;

If however, they are defined outside all code blocks,
then they are static by implication. These variables
are also known as "global' because their identifier
is knouwn, ie has scope, throughout the file it is
defined in. Memory for static local and global vari-
ables as well as external variables, is held in mem-
ory obtained from the operating system at the time
the program code was loaded. The operating system
clears the memory space to zero and in this way,
memory that is static is initialized to zero.

External variables exist and retain their values
throughout the entire program execution, not simply
the source file they were defined in. Thus, they can
be used as communication between different blocks and
indeed separately compiled pieces of code.

Register variables are (usually, if possible) stored
in the fast registers of the CPU. They are usually
used for values that must be available quickly - such
as loop counters, etc. You can declare any number of
variables to be of "register" storage class, but
should there be more variables than registers because
the excess will be allocated RAM storage locations
and thers will be no speed advantage.

Thus a storage class, to some extent, defines the
scope of the variable throughout the execution of the
program.

Declaration of a Variable

Before a variable or identifier can be used, it must
be declared to the compiler. This is done at the
appropriate place, the beginning of the block in
which it will be used. A typical identifier declar-
ation loocks something like this:

int count, number, totalj

float result, length;

In these two lines, we have given all the information
necessary for the compiler to do what it has to when
we begin referring to these variables in the program.
Here we have defined the variables "count", "number"
and "total" to be of type integer. Their scope is
confined to the block in which they were declared and
their storage class is implicitly static if they were
defined outside of any blocks or automatic if inside.
Similarly for the floating point variables "result"
and "length".

When a variable is defined, it may also be assigned
an initial value:

int 1 = 0;

Page 17 Number 27

Here, i is set to 0. If the variable is external or
static, the initialization is done only once, con-
ceptually before the program starts executing. Auto-
matic variables however, are never initialized. If
an automatic variable is not initialized, it contains
garbage. External and static variables are initial-
ized to O by default, or null in the case of char-
acter variables.

Constants

Constants are not really part of the program as such.
They appear as ffdefines. A fdefine is a compiler
directive, and has its effect during compilation
rather than during execution of the proqram. e
define a constant before we use it (abviously) at the
beginning on the program text like so:
#define CTRLC '0Ox3'

Here we have defined the identifier "CTRLC" as being
a character (single byte) with the hexadecimal value
of 3. We know it is a single byte as it is surround-
ed by single quotes, and this defines a character.
The 0Ox construct tells the compiler that the next
digits are to be interpreted as a hexadecimal (base
16) number. The constant is in upper case. It need
not be, but this is a tradition in C programming,
‘that all constants are in upper case. Other types of
constants are numbers and strings:

#define NAME "John Smith"
f#idefine MAXLINENUMBER 1000
#idefine FORMFEED "\O14!

Here we have defined a string constant, surrounded by
double quotes, an integer MAXLINENUMBER with its
value 1000, and a character FORMFEED defined by the
octal construct \xxx where xxx is three octal (base
8) digits. NOTE! a fdefimre is not terminated with a
semicolon as it is not a C statement but a compiler
directive. Ue will look at other compiler directives
later.

Operators

To be useful, a language must allow us to do things
to data. Operators are the means by which we effect
this. They allow us to do things to all types of
data and storage class.

Arithmetic

The basic arithmetic operators which are found in
most languages are + addition, - subtraction, * mult-
iplication, / division. In C there are also the
following: % the modulus operator, and a upary -.
There is no unary +. The list in order or precedence
iss unary -, followed by *,/ and % (all identical),
followed by + and binary -. They group left to right
and the evaluation of expressions can be altered
using parentheses (). A word of warning though,
associative and commutative operators * and + may
have their order of evaluation altered by the compil-
er e.g. a+(b+c) may be evaluated as (a+b)+c or
a+(b+c). If you have to have a particular order,
then the K & R Bible states that you must use temp-
orary variables.

August 1988

Amiga Workbench

Relational and lLogical

The relational operators are: > >= < <=, They have
the same precedence. Below them in precedence are
the equality operators == (equal to) and 1= (not
aqual to). Arithmetic operators have higher preced-
ence than relationals.

The logical operators (or connectives) are & (and),
and ll (or). These are evaluated left to right and
have lower precedence than the relational operators.

Next month, we will continue with operators, locking
at some of the nicer features of the language like
bit-wise operator and the power (and danger) of type
conversion. Hopefully, we will also look at the
general overview of a C program and identifying its
features and uwhere the things we have spoken about,
fit in.

Editor’s Column
(Written August Bth, 1988)

Hi. Ron Wail and I had an informal meeting with Tony
Cuffe of Commodore a week or two ago, when Tony and
quite a number of other Commodore staff were in town.
One of the more interesting topics was
Kickstart/Workbench Vi.3. Tony says this should be
available at the end of September as a V1.3 Enhancer
Pack (or words to that effect) for around $30 or so.
The V1.3 Ephancer will include a 1.3 Kickstart disk
for 1000 owners, 1.3 Workbench anmd 1.3 Extras disk,
along with a fantastic manual. I've had brief look
through the draft of this manual, apd it's great!
All the CLI stuff that has never been explained
properly is in there, along with ¥full documentation
on all the new programs and stuff you've been reading
about in V1.3 articles. For 500 and 2000 ouwners, new
Kickstart ROMS will be available for about $40 or so,
just take your machine to a service centre. PNote
that you do not need these new ROMs unless you hdve a
V1.3 compatible auto-booting hard disk drive and want
to auto-boot from it.

For developers, a complete set of V1.3 disks and all
the notes from the recent developer's conference in
the USA will be available in a few weeks. Commodore
will notify registered developers by mail about costs
and availability.

All Commodore add-on boards for the 2000 (like 68020,
huge memory boards, etc) will also be available soon,
Commodore spparently already has the hoards but is
waiting for documentation.

For 2090 hard disk controller ouwners, Commodore is
going to produce an add-on board that will
effectively upgrade you to 2080A standard. Either a
modified 2090 or a 2090A will allow you to boot your
Amiga from the hard disk.

Tony sald the Amiga 3000 does not exist. Apparently,
anyone who counts has been asked what they would like
a 3000 to be if Commodore made ane, but that is about
as far as it goes. The 2000 is to be Commodore's
"standard" Amiga, and the various 2500 models are
Just 2000s pre-configured by Commadore with boards
and drives.

Oops, T seem to have run out of space. 1'l1 see you
at the next meeting, August 21st at Monash.

Amiga Workbench Number 27 August 1988 Page 18
Newsletter Back Issue Order Form
Issue Numbers:
Number of issues at $2 each $
Less 10%Z for 5 or more - $
Club Use Only Total $
Mail to: Amiga Users Group, PO Box 48, Boronia, 3155
Member's Name:
Address:
SOFTWARE ORDER FORM
Disk numbers :
Disks supplied by Amiga User Group @ $8 $
Disks supphed by member @ $2 $
$
Mail to: Amiga Users Group, PO Box 48, Boronia, 3155, Victoria,
Member's Name:
Address:
Application for Membership of The Amiga Users Group Inc
Membership is $20 per year. Send your cheque to: Amiga Users Group Inc, PO Box 48, Boronia, 3155 ,
Surname: Details on this side are optional
First Name: Year of birth: Which model Amiga:
Address: Occupation:
Interests:
Phone Number: STD Code:
Where did you hear about AUG:
Dealer's Name:
Dealer's Address:
Signed: Date:
If admitted as a member, I agree to abide by the rules of the Association for the time being in force.
Club Use Only Date Paid Rept # Memb # Card Sent

August 1988 Amiga Workbench

AUG meets on the
third Sunday of each month

Monash University is in Wellington Road, Clayton.
F10. Melways map 84A shows the University Campus in details.
arrow on the map below to show where the Rotunda is.

See Melways Map 70, reference
I've drawn a huge
The best place to park

your car is the car park area between Wellington Road and the Rotunda., The
entrance to the Rotunda is virtually at the point of the arrow.

Vice-Chancetlor, Registrar, HI

Comptrolier, Students Records 15 BiQ-MEDICAL LIBRARY
4 MAIN LIBRARY . 16 BIGCHEMISTRY
5 KRONGOLD CHILD TRAINING CENTRE Undergraduate Laboratories
6 EDUCATION

7 ALEXANDER THEATRE

9 RELIGIOUS CENTRE 19 CENTRAL SCIERCE BLOCK

10 UNION Oftices ol Pwsms and Chemistry 33 BOILERHOUSE
Warden. Monash Association of Students. 20 FIRST YEAR CHEMISTRY 3

Clubs and Societies. Student Rewspaper, 21 200L0GY LECTURE THEATRES
Bookshop, Careers and Appaintments 22 FIRST YEAR BiQLOGY LABORATORY
Otlice. Past Oifice. Catenng Facihities 23 SENIOR CREMISTRY

Psychology, Botany and Genetics

41 ANIMAL Hi

11 HUMANITIES 25 EASTERAN SCIENCE LECTURE THEATRES 43 RICHARDSC
Faculties of Arts. Economics and Polihcs 26 FIRST YEAR PHYSICS 44 ROBERTS HALL

2 LAY 27 SENIOR PHYSICS 45 FARRER HALL

28 MATREMATICS. Comguter Centre, 45 HOWITT HALL

GARDINERS ROAD

) 1 SPORTS BUILDING. RECREATION HALL 13 MEDICINE 29 NORTHERN SCIENCE LEGTURE THEATRES HOWLEYS ‘€
Sporls and Recreation Asseciation Anatomy. Biochemistry, Physiology and 30 HARGRAVE LIBRARY & CAFETERIA ROAD
2 ROBERT BLACKWOOD HALL Pharmaco!og?' 3t ENGINEERING BUILDINGS 1 and 2(33) 30
3 UNIVERSITY OFFICES " e?ugﬁyonn ECHNOLOGY SECTION
0

Enaineuin(? 1all Oflices
32 ERGINEERING LECTURE THEATRES 47 CENTRAL BUILDING (CATERING)
34 ENGINEERING BUILOIRG 3 DEAKIN HALL
35 ENGINEERING BUILDINGS 4 and 6 138} 43 SOUTH-EAST FLATS
Elecinical, Chemical and Matenals

Enﬁmunrg
37 ENGINEERING BUILDING §
18 ssmﬁn ZO(?LOGV Givil, Chemical, Mechanical and
Materials Engineering Latoratones
BOTANY EXPERIMENTAL AREA
40 MAINTENAKCE BUILDING 4,.0
CENTRAL STORE

USE
Heallh Service, John Medley Library 24 WESTERN SCIENCE LEGTURE THEATRES 42 ZOOLOGY ‘P:‘VLRA)&MENML LABS
)]

NORMANBY ROAD

% LEOAL CETAE
60 MULTI- DISCIPLINE NEY TG CARPARKS
CENTRE Visual Arts & | [T] Restricted Car Parks

Gallery Aboniginat
Research Cenlre (B JFres Carparks

Computer Scrence, Maths Lecture
Thealres and Earth Sciences -

o

s

Cressterrsatee

Pryoinent iy
st Gt

[WOODSIDEZ AVE

|

RING ROAD WEST:

e

G

C
0

== RING ROAD NOR ., H wommn cmt Envuonmenlal\S:Ence Motorcycle Parking

Visitors 2 Mt Parking

Parking spaces marked
Authorised Vehicles Only

@

are specifically tor JOCK MAZSHAU
100LOGY RESERVE

authorised vehicles

Parking spaces for the

Hangicapped or Incapacilated ™,
are shown .
The Universily s coads and carparks are © N
subject to 1he prowisions ol the Victonan
Transport Act and ‘owner-0nus apphes
Week-day visitors between the hours o 8
and § shoutd use only Those carparks
OVAL 3 marked P*

55 T

1
O

/

,

J A

g
Y

OVAL 2.

SOCCER
SOCCER - HOCKEY

BLACKBURN ROAD

OVAL 1.

BASEBALL

60
<o

\ Q
[

A
tatety

il

53
MANNtX COLLEGE
3

N €

WELLINGTON ROAD: e ¥ e ?

BY PUBLIC TRANSPORT ... The simplest method is to take a train from Flinders
Street or Loop stations on the Dandenong/Pakenham line to either Hunting-
dale or Clayton. Buses run from these stations to the campus or there is a taxi
rank at Clayton. With suitable connections the trip takes about 45 minutes —
but it can take longer! An inner neighborhood ticket will take you all the way
via Huntingdale station and the bus, but you willneed to purchase a compre-
hensive ticket for the trip via Clayton, which encompasses two neighbor-
hoods. The campus is also served by buses from Box Hill, Biackburn, Beigrave,
Chadstone, Jells Park-Glen Waverley, Dandenong-Mulgrave, Oakleigh and
Eiwood.

FROM THE CITY BY CAR ... An easy route Is along St Kilda Road or Kingsway/
Queens Road and then on to Dandenong Road. The campus's tall Menzies
Building comes into view a kilometre or so before the left turninto Wellington
Road on which the main entrance is located. Allow 40-50 minutes for the
trip. Drivers should note that restrictions apply in some car parks weekdays
9 a.m.to § p.m. and fines do apply. There is ample unrestricted parking and,
closer to buildings, designated two hour visitor car parks — check the map or
ask at the Gatehouse.

